Indian Statistical Institute, Bangalore

B. Math (Hons.) Third Year

Second Semester - Differential Geometry II

Back Paper Exam Maximum Marks: 45 Date: June 15, 2018 Duration: 3 hours

- 1. Show that the space of orthogonal matrices O(n) is a manifold and find the dimension of O(n). [3 + 2 = 5]
- 2. (a) Show that there exists no submersion $f : \mathbb{S}^n \to \mathbb{R}^m (m, n \ge 1)$.
 - (b) Show that every open topological subgroup is a closed subgroup. $[4\,+\,4\,=\,8]$
- 3. Define a p-form on a smooth manifold. Verify that the smoothness of a p-form is independent of local parameterizations. [2 + 3 = 5]
- 4. Show that there can be atmost two orientations on a connected manifold. [5]
- 5. Equip the unitary group U(m) with the Riemannian metric g given by $g(Z, W) = Re(\text{ trace } (\overline{Z}^t \cdot W))$. Show that for each $p \in U(m)$, the left translation $L_p: U(m) \to U(m)$ is an isometry. [7]
- 6. Determine which of the following vector fields are complete.

(a)
$$X(x_1, x_2) = (x_1, x_2, 1, 0), (x_1, x_2) \in \mathbb{R}^2$$

(b) $X(x_1, x_2) = (x_1, x_2, 1, 0), (x_1, x_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$
(c) $X(x_1, x_2) = (x_1, x_2, -x_2, x_1), (x_1, x_2) \in \mathbb{R}^2 \setminus \{(0, 0)\}$
(d) $X(x_1, x_2) = (x_1, x_2, 1 + x_1^2, 0), (x_1, x_2) \in \mathbb{R}^2$
(e) $X(x_1, x_2) = (x_1, x_2, x_2, x_1), (x_1, x_2) \in \mathbb{R}^2$ [15]